PARAMETERS OF A STATIONARY RADIALLY
SYMMETRICAL JET OF VAPORS HEATED
BY LASER RADIATION

T. B. Malyavina and I. V. Nemchinov UDC 532.529.5/6

The solution [1] of the problem of the stationary radially symmetrical movement of vapors
heated by monochromatic radiation is generalized for the case of an arbitrary (tabular) de~
pendence of the coefficient of absorption and the adiabatic index on the temperature and
density. The calculations of thermodynamical and optical properties of vapors of a number
of elements carried out in a wide range of densities and temperatures and the solution re~
ferred to made it possible to determine the parameters of a stationary jet of vapors in a
wide range of radiation flux densities and characteristic dimension. Some results of the
calculations for carbon and aluminum are presented. It turns out that a characteristic
property of the distribution pattern of parameters in a jet of vapors is the presence on the
surface of a zone of cold vapors and a zone of their heating — the heating wave front. How-
ever, for large radiation flux densities the extent of the zone of cold vapors is not large. A
rough estimate of the intensity of reradiation of the heated vapors is derived. It is shown
that for characteristic dimensions of the vapor layer on the order of 0.3-1 cm the intensity
of reradiation can be high enough that the pattern of movement found without considering
reradiation can change somewhat. It is shown that the solution examined can be generalized
also to the case where the transfer of energy by radiation of the continuous spectrum istak-
en into account.

A jet of vapors is formed from the effect of laser radiation on the surface of a solid body. For a
sufficiently large flux density of the incident radiation the pressure at the surface and, withit, the temper-
ature of the phase transition increase enough that the vapors become weakly ionized and absorb the laser
radiation with free—free electron transitions in the field of ions and neutral atoms. As a result the vapors
are strongly heated and ionized. The absorption by ionized vapors can be so great that only a small part
of the radiation energy goes to the vaporizing surface (the "screening" of this surface takes place), while
the rest of the energy is absorbed by the vapors.

The possibility of vaporizing practically any substance and (as a result of absorption of radiation in
the vapors) heating it to very high temperatures and (with the dispersion of the vapors into a vacuum) ac-
celerating it to high velocities allows one to carry out a whole series of physical and gas dynamic experi-
ments. It is therefore of undoubted interest to determine the parameters of the jet of vapors.

The picture of the heating process and the movement of vapors can be very complicated. It can be
fully described only through a solution of the nonstationary gas dynamic problem taking into account the
release of energy during the absorption of radiation and a whole series of physical processes. For a long
enough duration of energy input or for a small size of the "spot” on which the incident radiation isfocussed,
effects of lateral expansion of the vapors appear and the problem becomes two-dimensional and in some
cases even three-dimensional.

At the same time it is desirable to simplify the situation in order to conduct experimental studies in
the plasma which is formed and on the process of the radiation effect itself. In this sense it is attractive
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to use the stationary system of heating and vapor movement indicated in [1]. In fact, suppose the radiation
falls on the surface of a sphere from all sides or in some cone (with the apex at the center of the sphere)
limited in divergence and bearing on the contour of the irradiation "field" on the surface of the sphere.
Suppose the rays fill the entire cone and are directed radially toward the center of the sphere. Although
the latter, strictly speaking, is impossible, nevertheless if the radius is somewhat larger than the mini-
mum size which can be achieved in focussing the bundle of rays leaving the lens, then in practice the radi-
ation can be considered as falling perpendicularly on the surface of the sphere. It is natural that for this
geometry the movement of vapors from the vaporizing sphere will also be radially symmetrical.

Over a long enough time, after the heating of vapors occurs (the rather complicated pattern of this
process is described in [2, 3]), when the thickness of the layer of vapors becomes comparable to the di-
mension ry of the irradiated sphere, the density p of the vapors begins to drop faster than in the plane case.
In the region of multiple ionization it can be assumed approximately that the coefficient of absorption of
o'gtical radiation n does not depend on the temperature T but varies only with the density (approximately as
pR, Br0.5-1).

Therefore the more rapid drop in density leads to an increase in the transparency of the peripheral
layers of the vapors. The absorption occurs principally at a distance of {(r—ry) £ ry, and the optical thick-
ness of this zone proves to be constant. As a result it is possible for a stationary state of movement of
the vapors heated by radiation to develop in a "straight-walled nozzle." A transition through the speed of
sound takes place in some critical section of radius ry (the parameters in this section will be marked with
asterisks).

In {1] the problem was solved (the parameters are determined in the critical section and their dis-
tribution with respect to the vaporizing surface is found) for the case where the coefficient of absorption
was described by an exponential function of the internal energy e and the density p:

® = Ke‘dpﬁ (0.1)
while the adiabatic index y was taken as constant.

In such a case the movement has a unique isomorphic nature: The pattern of the movement can be
described by a single (for each @, 3, and y) dimensionless distribution of p/p,, p/ps, W/u,, and q/q, with
respect to r/ry (uis the veloeity of movement, g is the radiation flux density), while the parameters in the
critical section vary in an exponential fashion with a change in ry and q4 and consequently in ry and g4 (qg
is the radiation flux density at the surface of the sphere in the absence of screening).

At the same time it is clear that {0.1) cannot describe the actual dependence w. (e, p) in the whole
range of e and p. In fact, it was already shown in [4] that in problems on the distribution of a vaporization
wave under the effect of radiation (taking into account the screening by vapors) there is always a cold layer
at the vaporizing surface which has a temperature close to the phase transition temperature Ty. But the
gas will be weakly ionized in this layer for rather low vapor pressures and corresponding phase transition
temperatures Ty. Therefore the coefficients of absorption vary here, roughly speaking, according to the
Boltzmann exponential law, i.e., sharply, and they depend in an essentially nonlinear fashion on the tem-
perature T and are almost independent of the density p. Thus, it can be said that the cold layer at the sur-
face, where (0.1) is invalid, can have a great enough extent so that either the pattern of distribution of the
parameters changes as compared to that presented in [1] or it generally leads to the impossibility of a
stationary state. Let us note that just as in the plane case (when the thickness of the vapor layer is still
small in comparison with the characteristic dimension ry) the pattern of movement can differ markedly
from that which is given by the isomorphic solution [5, 6] found on the assumption of (0.1). In such a case
the pattern of movement can be obtained only through numerical calculations of the nonstationary problem,
similar to [2, 3] drawing on tabular dependences of n (e, p) and y (e, p). Moreover the stationary solution
[1] is easy to generalize to the case of a variable adiabatic index ¥ and an arbitrary dependence of ® on e
and p. This allows a rather direct determination of the parameters of the vapor jet as a function of the
incident flux density q, and the characteristic dimension ry taking into consideration the actual equation of
state and the actual dependence of the absorption coefficient on the temperature and density.

1. The system of equations describing the process of movement and heating has the form

dp + pudu = 0 (1.1
purr-t = pyu,rit = M/E(v) 1.2)
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M (h 4y w?) + F = M (b + Ha?) + Fy (1.3)
dF-[ldr =+ F~xp (F-<0) (1.4)
dFtldr = — Frap  (F7>0) (1.5)
Here h=e+p/p is the enthalpy, M is the mass flow rate, F is the total radiant energy flux (F= Ft+

F7), F™ is the energy flux reaching the surface, F* is the radiant flux reflected from the vaporization wave,
and the equations at the vaporization wave (index w) have the form

Oulhaglio * = M [ L (V) (1.8)
Po = Pw+ Pwuw2 (17)
M (hy 4 Ygu,2) + Foy = — MQ, (1.8)

Bt = (K o)

L(v) =1.2m, 4n for v =1, 2, 3 respectively
Here py is the unknown pressure in front of the wave (in the solid body), Qy is the heat of vaporiza-

tion, and (Ky)y is the effective coefficient of reflection from the vaporization wave, It can only be deter-
mined from a theoretical or experimental study of the structure of the wave.

Since most of the energy is absorbed in the vapors and does not reach the vaporization wave, the
value Fy, is usually small compared to F, and accordingly is smaller than FI Therefore (Ky)y is not a
very important parameter, and for the concrete calculations carried out below values were used which
were determined on the basis of the fact that in the absence of screening (when the effect of this parameter
is not great) the pressure p, calculated at the surface of the solid body is close to the experimental pres-
sure [7, 8]. In particular, for aluminum we took (K,)y=0.72. In the derivation of (1.8) it is assumed that
the radiant flux is F=0 in front of the vaporization wave, and the enthalpy of the cold material in the solid
state is equal to (—Qy). Using (1.8) and (1.3) we find that the following condition of balance of the radiant
and hydrodynamic fluxes is satisfied at the critical point:

Fy + M (hy + Yau®) = — MOQ, (1.10)
Since a transition through the speed of sound occurs here,
Uy =y =V EyPy 04 (1.11)
Here c is the speed of sound and K is the differential adiabatic index:
K = (dIn p/d In p)se—const (1.12)
2. The effective adiabatic index y is determined from the equation
e=FEom o O =gy 2.1

Here e (or h) and p are taken as unknown functions of the temperature T and density p (or of the spe-
cific volume v=p~1). It is useful to introduce two other dimensionless functions C and N through the equa-
tion

pv = NR'T, h = CR'T; R = R/A, (2.2)

Here R is the universal gas constant and Ay is the atomic Weigh;u (in the un-ionized state).

It is natural that N, C, and y are related to each other by the following equation:

CIN —1 = (y — 1)1 (2.3)

In an ideal, monoatomic un-ionized gas we have

N =1, C="2%,v=75,

From now on the equation of state is needed in the differential form. For this we differentiate (2.2)
and obtain
dh d d
T A — 4, =0 (2.4)

v
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where

dinC , dlnN\-1
AP:<1+amT>(*T?ET) (2.5)
dlnN\., dlnC
Av:Ap<1,— 61nv)+ dlnov (26)

Here the partial derivative with respect to v is taken at T=const. For adiabatic movement the fol-
lowing relation occurs:

de+pdv=0 or dh—uvdp =0 2.7
From (2.1) and (2.7) we obtain a relation for K, v, Ap, and Ay :

dhih=(x—1)ydp/p (2.8)
K =14, 14 (A4, — )71 ‘ (2.9)

Thermodynamic functions usually have T and v as their arguments. However, it is convenient to
conduct gas dynamic calculations (not only in the present problem) since there are tables of T and vy as
functions of e and v (or h and v).

Let us now make some comments useful from a practical aspect. If the scale of the arguments of
the functions of y or %, given by the table at the points e; and v, is nonuniform, the search for the desired
entry in the tables is difficult. The desired entry is found by a successive sorting over of the arguments
ej and vk and comparing them with some values of e and v, for which the function of v or % must be de-
termined. In addition, the total volume of work is significantly reduced (especially for a table with a large
number of points) if the scale of the table is made uniform. Then, having taken whole fractions from the
ratios (ey—em)/Ae and (vy—vy)/Av, where ey, and vyy, are the minimum values of the arguments and Ae

~and Av are the steps (constant), we immediately obtain the numbers i and K of the desired entry. As for
tables of thermodynamic and optical properties, a uniform scale is admissible (without an excess of points
in some regions and their shortage in others) if e and v or their logarithms are taken as the arguments.
In this case it is also easy to obtain an expression for the differential adiabatic index:

_ dlny olny 1 (2.10)
K=T+3%e — 30 =10 '

Here the partial derivative with respect to v is taken at e=const. Introducing

1= Qily, 1=1+4(ta— 1) K, /21, (2.11)

Eq. (1.10) can be rewri‘pten in the form
Mh, (X + n) = —F, ‘ (2.12)
3. Dimensionless equations are obtained from the system of equations written out in Sec, 1 if dimen-

sionless variables (designating them by the same letters and the upper index v) are introduced through the
equations

P°=p/py, 0°=0lpy, " =r/r,, F*=F/F,

uuzu/u*, Ku=}€/%*, (F+)D=F+/F*, (F-)v_____F_/F* (31)

Since we will use only the dimensionless variables here, we omit this index. As a result we obtain
the following system:

dp + YK, pdg = 0, g = u? (3.2)
b+gm—10)+%X=Fn+% (3.3)
puS =1, § = (3.4)

The differential form of the equation of state (2.4) does not change its form after the transition to di-
mensionless variables. From (3.2)-(3.4) and (2.4) one can obtain

as [u‘ S F (47 1J:£ (h—29) (3.5)

S |9 F TR T4, T 2g &

The following notation was introduced here:

P=RG—D v 3.6)
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The equation (2.9) was used for the result (3.5).
At the sonic point we have
p=h=g=F=8§=9¢9=1 (3.7)

For a continuous transition through the speed of sound it is necessary that the sonic point is singular.
Therefore the following equation is involved:

dFldsS = A, */(m + %) (3.8)
It is easy to show that it relates the energy release with the work of the forces of expansion.

We note that Eq. (3.5) is obtained independently of the mechanism of energy transport (by monochro-
matic radiation, continuous spectrum radiation, or, for instance, electron thermal conduction). Therefore
the condition of transport through the speed of sound (3.8) is algo sufficiently general.

If the energy transport takes place only through monochromatic radiation, the dimensionless trans~
port equations (1.4) and (1.5) take the form

dF- wF- (3.9)
a5 T pw—1) ghsen

iFt wF*

a5 T T A —1) ghset (3.10)

where A = L/ry, © = (v — 2)/(v — 1) (I is the radiation range, ! = 1/(xp), F* > 0, 7> 0, F=(F+t—F)>0).
From this we obtain the following condition at the critical point:

Ay —1) = — &+ m@FH) + F~ (1)/4,* (3.11)

Note that (3.11) involves not the total flux F(1)=F*(1)~F~(1) but the sum F*(1) + F (1), the analog of
the radiant energy density, since the condition (3.8) and (3.11) is a condition not on the flux but on the en-
ergy release at the critical point. This remark is important for the generalization of the solution consid~
ered here to the case of a continuous spectrum.

4. The analysis at the singular point can be obtained from (3.5) and (3.8)-(3.11) as well as from the
original system. Introducing (for |g—1|« 1), as in [1],

F—1=z2(—1),8S—1=A4A(F—1)=A4z(g —1) (4.1)
we obtain
A = (% + n)/4,* (4.2)
It follows from (3.3) and (3.4) that
p—1=—(,y + Az)(g — 1) (4.3)
h—1=1[44% — (n — D] (g — 1)

Near the singular point the approximation (0.1) can be used, where

[ dlnx n [ 2lnxn (4.4)
o= 0x= (alm); B=Bx= <61np )
If »is given as a function of h and p, then @ and B are determined directly by numerical differentia-
tion of the tables.

Therefore near the critical point we obtain the following expansion for the dimensionless %:

=1 =—a(—1)+pp—1) (4.5)

If ® is given as a function of T and p, then

o ==

alnx AlnC\-1 . dlnx dlnC
~ W7 (“rm) » B=nr Ty .6

As a result, taking into account (3.11), we obtain from (3.5) a quadratic equation for determining the
slope z of the integral curve;

a2 4 bz + e, =0 (4.7
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For simplicity we shall confine ourselves to the case when the change in ¢ can be neglected. Then
the coefficients in (4.7) are determined in the following way:

Ca= (e [odk 2 1) (4.8)
b, = [—2a (n — 1) — (29 — 3) + Bl/A* + 1 (4.9)
c, = —n/(n+%) (4.10)

It is easy to see that for y=K=const we obtain the following expressions for az, by, and cy:
2, =214 (a+ B+ o+ 1) (n -+ W) (4.11)
by=—a(y—1)+Bp—v+3 (4.12)
— @+ 020 +% (4.13)

We note that in [1], where the case of y=const was examined, an incorrect expression is given for
a, which, however, is practically not reflected in the results of the numerical calculations. The error was
pointed out by B. M. Prosvirnina, for which the authors are grateful.

The problem can be solved in the following way. We shall set ourselves the temperature T, and
density p, in the critical section. We find h, and v, as well as Ky, @4, and B4 from thermodynamic ta-
bles. We find the velocity of movement uy from Eq. (1.11), and 7 and X from Eq. (2.11). Let us set an ar-
bitrary value for F*(1), for example, F'(1)=0. Itis convenient to begin solving the series of variants with
these parameters T, and p. since practically all the radiation is absorbed in the vapors and therefore in
reality F*(1) « 1. Subsequently decreasing Ty gradually, we will begin the calculation each time using the
F*(1) from the preceding variant. We find the dimension r, of the critical section from (3.11), and the to-
tal size of the flux Fyi from (2.10). Using (4.7)~-(4.10) we leave the singular point and begin a numerical
calculation of the simultaneous differential equations, moving toward the surface of the body. A condition
of phase equilibrium is observed immediately in front of the vaporization wave so that the temperature is
related to the pressure through a single-valued dependence: Ty =T(p). This dependence is usually ap-
proximated by the following analytical function:

lgep=a—b/T (4.14)

For aluminum according to a data analysis presented in [9], where the dependence Tv(p) is obtained
up to p=100 bar, we have ¢ =5.351 and b=1.223 if p is in bar and T in eV. After the dependence T(p) ob-
tained from the calculation intersects (4.14), we calculate the pressure Py in front of the vaporization wave
from Eq. (1.7). Equations (1.6) and (1.8) are automatically satisfied since they were taken into consgider-
ation in the equations in the critical section. We obtain F"' from Eq. (1.9). Since F,,, =F +(F w /Fs"), we
immediately find F§. Now we can start the calculation over again up to full convergence. A rather large
number of iterations is usually required.

We then carry out a calculation of the supersonic zone, moving away from the body until ¥+ (or F")
no longer changes. This usually occurs at a distance of several critical section radii. We now determine
qo from F,,. From now on the movement can be considered as adiabatic and Eq. (1.3) is used to determine
the flow veloecity u,, (at infinity).

5. Tables of the thermodynamic and optical properties of vapors of the material which are needed
to conduct such calculations are unfortunately nonexistent. Therefore these calculations were conducted
for several materials.

The degree of ionization of the substance was determined from Saha's system of equations of ioniza~
tion equilibrium [10] assuming the plasma to be electrically neutral and taking into account the law of
conservation of nuclei per unit volume (equation of material balance) and the reduction in the ionization
potential [10, 11]. This nonlinear algebraic system was solved by a method described in [12]. The inter-
nal energy e of the material was calculated as for an ideal gas with the Debye correction [10, 11], the elec~
tron excitation energy, and the energy loss in ionization taken into account. The energy levels and statis-
tical weights needed for the calculation were taken from tables [12-14]. The change in the number of par-
ticles due to ionization and the Debye correction were considered in calculating the pressure. The pre-
cision in the calculation of the thermodynamic functions is evidently elose to the precision in the corre- -
sponding calculations for air [15].
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4 ﬂg T In calculating the coefficients of absorption allowance

w was made for the free—free transitions of electrons in the
’ field of ions and for absorption owing to bound—free tran-
14 # sitions from highly excited states on the assumption that
”/ these states are hydrogen-like (in substituting summation
/ over the levels taking part in the absorption for integration
[16]). The resulting expression has the following form:

N\

X 1= 0.571-10"2 e+37*: /{[1 — exp (—e/ T)Ip} (5.1)
wr Here [ is in cm, the energy ¢ of the quanta and the
/ 0001 temperature T are in €V, 6 is the relative density, o is
2 ; 7 the relative electron concentration, and @ is the relative
/ / concentration of ions having charge number i(i=0 for a
/ neutral atom), and
e / .
g 1 _ 9 .
75 2 7 b =a, ( Joi* Jexp (s/T)
27/ (3ee)
) z
. §=opvp =N, /N, a;=N;/N,, Doy=1 (5.2)
-08 =
Fig. 1 In the expression presented Nj is the number of par-

ticles per unit volume, Ny is the number of nuclei (or the

"initial™ number of particles "before ionization™), and N7,
is the Loschmidt number. Hence the specific volume vy, (for §=1) is equal to 2.2415 - 10* /Ay cm?®/g. For
aluminum py =1/vy,=1.20 - 107% g/cm?.

For low temperatures T and degrees of ionization g the concentration of neutral atoms and the free—
free transitions of electrons in the field of such atoms become important. They were accounted for in ac-
cordance with the results of [17]. The elastic interaction cross section needed for the calculations is un-
fortunately not known for metal vapors. Therefore it was rather roughly estimated from the "size of the
atom" according to the hydrogen-like approximation and the first ionization potential I;. For aluminum it
was taken as equal to 20.4 may?, where 7ra02=aB is the Bohr cross section.

In this temperature region the error introduced in this way is still evidently less than the inaccura-
cies connected with other assumptions, primarily with the assumptions of an ideal plasma, full equilibrium
both of the phase transition and the degree of ionization, the absence of electron diffusion and electron
thermal conduction, and also ignoring absorption in broadened lines.

The results of the calculations for approximately 80 temperatures (up to T=40 eV) and 12 densities
from §=100 to 6=3- 10™* were then reinterpolated on a uniform scale for In (e) {also at 80 points) and In
(v). We shall present the results of the calculations for aluminum.

The dependence of the temperature T (eV) on e (kJ/g) and 6 (a grid for § twice as fine was actually
used in the calculations) is presented in Fig. 1, the dependence of the effective adiabatic index v on e and
is presented in Fig. 2, and the dependence of the mass absorption coefficient %(cmz/g) on e and & forquanta
with energy €=¢€;=1.16 eV is presented in Fig. 3. (The values of % on the phase equilibrium curve are
shown by dashes.) The absorption coefficient for quanta of other energies €= g can be estimated from the
dependence shown in Fig. 3 (those for which an overall calculation of the absorption with highly excited
states is permissible, i.e., with energies £=1-3 T):

% = %4 {eo/e)® [exp (e/T) — 1V/]exp (eo/T) — 1] (5.3)
It is easy to see that n~¢e2 for e« T.

The dependences are analogous for other elements, although for elements with lower atomic num-
bers Z, such as Be and C, they have a less smooth nature, while conversely, the dependence is smoother
for materials having higher Z (for example, W and Pb). Accordingly, the approximations (0.1) and y=
const are applicable over a wider range for the latter.

6. A rough approximation of the tabular dependence presented in Fig. 3 in the region of multiple ion-
ization leads to the following expression (if € is in eV):

% = Ke™28%6, K = 7.90-10° cm?/g, K = Koy~ %* (6.1)
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g 7 2 7 lge
Fig. 2
g2 7 In accordance with the results of the calculations presented in
’ | T Fig. 2 one can take y=1.20 as a typical value. Using (6.1) it is easy
‘ /iﬂ—’_ to obtain approximate functions for the parameters both in the stage
s —p—— f— 4 of the stationary state and in the preceding stage of the nonstation-
' // //-\//7/’ ary plane wave of heating. The isomorphic solution [5, 6} can be
e /\_/N | — used for this purpose. At the request of the authors V. M. Krol!
I A e — .conducted calculations of a system of simultaneous differential equa-
//// /\/—/'UW tions describing the distribution of parameters in the isomorphic
dy i system and obtained
/ i i ' O = 250548 0.5% gyl
L g¢ _ 0.579 ,—0.263 _0.526
a7 ? J 4 o= 8.6‘]3 a1 to 263 b 5
Uy = 9.5gy 10263 ¢, 05% (6.2)
Fig. 3 Om = 0.50-104g, 28 4~0-78 1750

My, = 0.55 . 10—4qg.158 t0.474 83.05

Here ey, is the maximum internal energy, and py, is the density at the point where e=ey,. The quan-
tity upy is the maximum velocity of the vapors, mw is the amount of vaporized mass, and p, is the pressure
at the vaporizing surface. Having integrated the dependence py(t) we obtain the following ratio of the im~
pulse J created to the supplied energy E: '

JIE =19 E~0.421to.158800.526 = 12 E‘0-233q0—0-158800.526 (6.3)
Here and afterward q, is in MW /cm?, u in km/sec, t in psec, e in kJ/g, p in bar, p in g/cm?®, m in
g/cm?, E in J, and J is in dyn - sec.
Approximating the dependence of the internal energy on the temperature T (eV) and the relative den-
sity 6 presented in Fig. 1 in the following way:
¢ = 5.37 T1-90§-0.152 » (6.4)
(the dash~dot line in Fig 1 for 6=1) we obtain an expression for the maximum temperature (in eV):

T == 1.5 gh-aa2g0.218g 0udl0 (6.5)

Let us now examine the stationary state, using the conservation laws at the critical point and the
condition (3.11), which in the absence of reflection, with y=const, and without taking into account heat ex-
pended in vaporization, i.e., for Qy=0, converts into A =1, /ry = (y+ 1) /4; we obtain

0y = 1.453 (Kr, ) " egs (6.6)
ey = 1.04¢7 (Kr ) "* 7"
Py = 0.303¢7 (Kr,) e
Uy = 0.50q:/’(Kr*)5 et
A calculation of the simultaneous differential equations describing the distribution of the parameters
in the stationary state, assuming the correctness of (0.1), led to the following values of the dimensionless
parameters:
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Fo' = 1.48, ¢,” = 115, us’® = 3.26, p,” = 2.29, r,;* = 0.815
Inserting these values and considering that q, =0.448 qq and r, =1.227 ry we find

= 26.5q3'567r3'416g;°'834
Po = 6.6 50205 0.016
J 1 E = 6.6g;°r;028 ;0416
Dy = 0.63.10-47;0-6% 8(1).25 6.7

0.333_0.208 —
Uew = 7.9q)53 ) 208, 0.016

— 0.351.0.168 —@.
Z 1'8q r, 1 g 0.338
Here the Sphere Size 1‘0 iS in cm.

For comparison we shall present analogous dependences for a fully ionized gas, to be specific, beryl-
lium (ag =% =4, which is approximately equal to the average value of &g for aluminum in the temperature
range considered). We borrow the values of the characteristic dimensionless parameters from [1, 6]. In
the law (0.1) if % is in cm?/g, p in g/cm?, and e in kJ/g the constant K=0.50- 10%*. The exponents are o=
3/2, B=1. For a plane nonstationary wave of heating we obtain

Po = Py = 5.6q:,/‘t“l/‘s:,/‘
Om = 0.26- 1075/~ g1t
e = 105g7"t e (6.8)
My = 0.5.1075g* " gl
Uy = 54q:,/‘t'/s gt
JIE =6.3g"t ek
T = 1.5q(',/’t'/‘85'/”
Note that the energy expended on the complete ionization of beryllium is equal to ~ 4 - 103 kJ/g while
this state of the vapors begins at a temperature of ~50 eV. In the quasistationary state of radially sym-
metrical movement we obtain the following variation functions of the parameters:

0y = 0.40-1078¢, "o gl
ey = qug/”r:,'sg"'
Po=Dy=4.8q0r;" et (6.9)
o = 80g rir o7
JIE = 4.8q5" g% el
Ty = 0.88¢°rd ;™

As follows from a comparison of the functions (6.3) and (6.8) and of {6.7) and (6.9), in the region of
multiple ionization we have a sharper dependence of the parameters on the flux density q, of the incident
radiation and the sphere size ry (and in the plane case on the time t) as well as on the energy ¢ of the
quanta than in the case of a fully ionized gas [1, 5, 6]. '

7. The exact numerical calculations of the problem involving the stationary state in which the fune-
tions n (e, p), y{e, p) and T (e, p) were used allow the results presented above to be made more precise
and explain the degree of deviation from the indicated functions such as (6.7) and (6.9) because of a differ-
ence from the law (0.1) or in the case of aluminum from (6.1).

A series of calculations was carried out for a number of materials at several values of the relative
density 64 in the critical section and for different temperatures Ty (from 1.75 to 45 eV). The tables used
for aluminum are presented in graph form in Figs. 1-3.

We note that according to (6.1) and the condition (3.11), for a single value of §, the dimension r, (and
ry) should depend weakly on the temperature Ty.

The results of the calculation for Al vapors at 64 =0.1 and three temperatures Ty, namely 2, 3, and
4 eV, are presented in Figs. 4-6. (Note that the index is omitted for the dimensionless variables.) Let us
show to what dimensional parameters these variants correspond. The sphere size was 0.50, 0.40, and 0.30
cm, respectively, the dimension of the critical section was 1.0, 0.66, and 0.44 cm, the speed of sound in
the critical section equalled 4.4, 6.2, and 8.1 km/sec, the time for establishing the stationary state was 61,
28, and 17 nsec, and the velocity of flow of the vapors was 15, 20, and 25 km/sec.
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The pressure py at the surface was 57, 100, and 170 bar; the pressure p,, at the critical point was 19,
36, and 59 bar; the flux density g, of the radiation at the sphere without shielding was 43, 56, and 90 MW/
cm?; and the radiation flux density qy at the critical point was 6, 16, and 31 MW /em?.

The presence of a rather extended zone of relatively cold vapors at the surface of the solid body at-
tracts attention. The gas in this zone is weakly ionized and absorbs almost none of the radiation passing
through the hot ionized layer which screens the vaporizing surface.

It should be noted that the heating of the vapors takes place very abruptly and one can speak of the
presence of a front of the wave of heating. This is related to the rather rapid growth in the coefficient of
absorption with the temperature (see Fig. 3).

As follows from Figs. 4-6, the thickness of the cold zone decreases with a growth in Ty and 4. The
latter is evidently connected with the increase in pressure py, at the surface and, in accordance with (4.14),
in the temperature of the phase transition and the coefficient of absorption ny, near the evaporating surface.

We also note the nonmonotonic nature of the change in pressure and velocity: in drawing away from
the surface the gas is slowed and the pressure increases [as in an ordinary (without preheating) subsonic
nozzle having diverging walls], and only then does.it begin to accelerate again in the subsonic zone, but
there the absorption of radiation and the release of energy by the vapors become important, while the pres-
sure drops (as in a pipe of constant cross section for a heated gas). In the supersonic zone the pattern
does not differ qualitatively from that which is obtained by calculations [1] assuming the correctness of
(0.1).

If the dependence of the coefficients (4.11) and (4.13) in the quadratic equation (4.7) on @ and 8 is
analyzed, noting that 8 always lies within the range of 0~1, it is found that no solution is possible for this
equation for any negative value of @, and therefore it is not always possible to find an integral curve pass-
ing through the singular point in the desired fashion [1]. Since in accordance with Fig. 3 the coefficient &
in Eq. (0.1), which can be used as an approximate equation near the singular point, also gradually decreases
and becomes negative with a decrease in T, it can be expected that a solution cannot be successfully con-
structed for low temperatures T,. This is also confirmed by the fact that (as seen in Figs. 4~6) as Ty de-
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creases, the sonic point approaches the maximum point of
the dimensionless coefficient of absorption nY =wu/x,,.
For T, €1.75 eV it was actually impossible to construct a
solution. However, the reason was not the nature of the
coefficients in (4.7) indicated above but the fact that still
earlier a second singular (sonic) point appears at the va-
porizing surface. This is related to the increase in the
velocity of the vapors in the cold zone as the surface is
approached. Analyzing the dependence of the number My,
at the vaporizing surface for a fixed T, we discover that
for some value of T, the number M = uy/ cy; reaches unity.

7
7 =f .
7 Kf/x 9 4, The states which occur with a further decrease in
7 7 7 T, were not studied. It is possible that discontinuous

flow develops here with a shock wave closing the first
supersonic zone, and it is possible that a solution of the
problem for the stationary state does not exist at all for
these parameters.

It is necessary to keep the following in view: since under actual conditions of the action of the radi-
ation a nonstationary phase of "lash™ absorption occurs, the solution of the quasistationary state problem
can be used only for estimating the time-averaged parameters (as shown by calculations for the nonstation-
ary problem conducted by V. I. Bergel'son in a variation of the method of [2, 3], and after the time ty = ry/Cx
of "establishing the stationary state™ some pulsations occur in the vaporization carrying the disturbance
also to the "hot" region of the vapors).

The results of the calculations for a given entry of Ty and 6, values were reinterpolated to a given
entry of q; and ry values.

The dependence of the temperature T on g, and ry is presented in Fig. 7. It is easy to see that this
dependence can be described by the exponential function (6.7) only for sufficiently high T, and q, (dash-dot
line in Fig 7 and following figures for ry=1 cm). For large r; and low values of Ty (and qy) the appear-
ance of a region oftwo-valued and three-valued solutions is noted. This is related to the two-valued and
three-valued nature of the dependence of n on T (or e) for a fixed 6 (see Fig. 3).

The dependence of the pressure p; at the surface of the solid body on g, and r; is presented in Fig. 8,
and in this case the results of the numerical solutions are in good agreement with (6.7) also only for large
gg- As seen from Fig. 8, because of the effect of screening of the vaporizing surface by vapors the de-
pendence of py on q; stops being linear and becomes weaker. The ratio p,/q, decreases with an increase
in gy in comparison with the case of the absence of screening (dashed line).

The dependences of the parameters found also permit an estimate of the intensity of reradiation by
the hot vapors. Let us turn our attention first of all to the fact that according to (5.3) the coefficient of ab~
sorption w of quanta of energy € exceeding energy &, of the incident radiation quanta is less than % {g) = %,.
Thus, the emitted radiation is volumetric. Equation (5.3) is valid, generally speaking, only for quanta with
energies of €<3T [10, 16], i.e., for T=7 eV, up to £=20 eV. In the region of harder quanta it is impossible
to employ a summation of all the levels; rather they must be taken into account individually, since the lev-
els absorbing such radiation are clearly not hydrogen-like. Nevertheless, to obtain a very preliminary
and round approximate estimate we can extend (5.3) down to values of £; equal to the typical ionization po-
tential 1.

The intensity of the volumetric radiation of a unit mass is equal to

oo

SBEdg=5T4 (7.1)
;

15 ce?

f—__—l_(:SBestsa BE:?W’
0

Here Bg isthe Planck function, o is the Stefan~ Boltzmann constant (o=0.1029 MW/cm? - eV4). Using
(5.3) and the assumption concerning its applicability made above we obtain

f = 60n~%cgy2T%, / T (7.2)
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At the same time, the infensity of energy release due to laser radiation absorption is approximately
equal to ®yq,. Substituting these values we obtain an approximate criterion for the role of reradiation:

E = 1.20-107 T% g, (7.3)
Here g;=7T (according to [10] and the calculation the typical values vary within the limits of 5-10T).

Values computed according to (7.3) are presented in Fig. 9. As seen, for large sizes r; (starting
with about 0.3 cm) the role of reradiation can be rather significant. The effect of reradiation can be two-
fold: on the one hand part of the energy is generally lost in leaving the dense zone of vapors; on the other
hand part is directed toward the surface of the solid body and is absorbed in the cold vapors, either reach-
ing the vaporization wave or heating the cold layer near the vaporizing surface. It is proposed that these
effects be analyzed in more detail in a separate article. Here we only indicate that a very effective means
for such an analysis is the use of the problem of the stationary state examined here which is easily gen-
eralized to the case of energy transfer by continuous spectrum radiation. Let us also note that a very ap~
proximate estimate of the role of reradiation can be derived from [18] or from (6.3), (6.5), or (6.7}, re-
placing the energy &, of the quanta of incident radiation in these equations with the average energy € of the
quanta emitted by the vapors, which is determined at the maximum attained temperature Tq which is re- -
lated to the radiation flux density q by Eq. (7.3) at ¢=1. In this case, however, one should have in view the
possibility of secondary reradiation from the zone heated by radiation of the continuous spectrum (tongue),
since this radiation is closer to black body radiation with a temperature in the tongue of T than to the ra-
diation of the hot layer.

8. Let us compare our calculations with the experimental results of N. G. Basov, O. N. Krokhin, G.
V. Sklizkov, et al. [19, 20].

The calculated dependences of the maximum flow velocity u,, for ry=0.1 cm are shown by solid lines
in Fig. 10. The experimental pointis (for a duration of the effect of tq=15~30 nsec), the results of measure-
ment of the maximum flow rate of carbon vapors, are joined by dashed lines. The velocity measurements
were made far enough from the surface so that the velocity was already almost constant and usually after
the end of the laser's effect. However, the comparison with the calculations is not too improper if one
considers that when the stationary state was established the velocity at the margin of the vapors is prac-
tically unchanged after the source is turned off and, as in the nonstationary problem, corresponds to the
maximum concentration of the energy released.

The velocity uy (lower solid curve in Fig. 10) is compared with the velocity of the boundary of the
opaque region (lower dashed line). Note that according to the calculations conducted it is just near the
critical point that the radiation begins to be strongly absorbed. The supersonic part of the jet is almost
transparent. '

As seen, there is satisfactory agreement of the calculated and experimental curves.

The temperatures attained are also plotted in Fig. 10. We note that at T, =40-50 eV carbon vapors
are ionized down to the K shell.

As follows from Fig. 10, in the experiment the screening of the vaporizing surface and the increase
in the vapor velocity eonnected with it were observed in a region of lower ¢y than follows from the calcu~
lations. This is evidently connected with the effect of the nonequilibrium nature of the ionization. Esti-
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mates made by one of the authors together with S. P. Popov show that the electron temperature is some-
what higher than the ion temperature, and accordingly the degree of ionization Q¢ is also higher (especially
in the region of low @ and T). This leads to a somewhat higher absorption coefficient %y for the vapor-
izing surface and hence to an earlier development of screening and a thinner cold layer than follows from
the calculations which were conducted on the assumption of thermodynamic equilibrium. Note that the non-
equilibrium ionization, reducing the time for heating the vapors, exerts a stabilizing effect on the process
of "burning” of the material (reradiation plays the same role), decreasing the duration of the pulsations
detected in [2, 3]. The results of calculations which take this circumstance into account are published sep-
arately.

The authors are grateful to V. V. Novikova for great assistance in conducting the calculations for the
stationary state problem and analyzing their results andto L. P. Markelova and V. A. Onishchuk for help
in conducting the calculations of the thermodynamic and optical properties of the vapors.
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